
Chapter 8
Motion in Perspective

As we study what happens to our perspective as we move from place to place, we will be 
continuing several themes. We will be distinguishing the obvious from the apparent; what we 
measure from what we see; the Cartesian from the polar; and the global from the local.

Where I grew up, Interstate 5 crosses through wide expanses of farmland. Take an imaginary 
trip with me in the car through the Skagit Valley. We're sitting in the passenger seats, so we're 
free to look idly about in any direction. Out the right-hand window, vast acres of silt deposited 
in this valley long ago by the Skagit River are freshly tilled into long furrows, which in our case 
happen to be running perpendicular to our section of freeway. Looking down these furrows 
out the side window, the near ends whip past us at 70 miles per hour, while the far ends 
hardly appear to move at  all.  An illusion is  created that  this plowed field is  rotating in a 
counterclockwise  fashion,  with  the  center  of  rotation  being  some  indeterminate  but  long 
distance away. Conversely, we might see the illusion of clockwise motion out the opposite 
window. But is this rotation purely illusion? As we drive north and approach a barn on our 
right, we see the south side. As it passes us, we see the west side. Looking behind us, we 
then see the north side. Let's just say for now that the illusion is stubbornly persistent.

Figure 8-1.

Rotation has a related geometrical concept called curl. When an object is rotating, it has an 
angular velocity which is uniform at every point, inside and out. In other words, each part of 
the object is circling the axis of spin with the same frequency. The linear velocities of each of 
the parts, however, vary greatly in both direction and speed. The outside moves faster than 
the inside; one side moves in the opposite direction of the other. Let's look at a wheel as an 
example.
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Figure 8-2.

Figure 8-3.
 
In Figure 8-2, point A on the wheel has a linear velocity vector of four feet per second along 
the x axis. Point B has a velocity vector of two feet per second in the same direction. Point C 
has no linear velocity at all, and the points shown on the opposite sides of the wheel have 
negative velocities. There is a continuous range of linear velocities from point A to point E 
with values from 4 to -4. There are an equal range of velocities relative to the y axis, as seen 
in Figure 8-3. Now let's look at a smaller section of Figure 8-2, the area between points A and 
B. 

Figure 8-4.

Taking very simple approximations, the difference in linear velocity between the top of this 
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picture and the bottom is two feet per second. The difference between the left and right sides 
is much more subtle. When we pick a very small space and see more difference in a vector 
from one pair of opposite sides than difference in another pair of opposite sides, the vector 
field is nonuniform. When the difference in vector strength varies in a direction perpendicular 
to  the  vectors,  we  say  that  we  measure  curl (Figure  8-5).  The  precise  formula  for  curl 
measurement can be found in Appendix B.

Figure 8-5.

Like our car on the freeway, we may only notice a difference along one axis (rather than the 
two axes of motion we see in rotational movement) and we may only see movement in one 
direction (rather than the opposite directions of rotational movement). Measurement of curl 
tells us that there might be overall rotation in the bigger picture, but there might not be. Curl 
has  a  numerical  value  and  may  be  positive  or  negative,  much  like  clockwise  or 
counterclockwise rotation may be a vector with positive or negative value. We might imagine 
that we are seeing positive curl out one window and negative curl out the other. Indeed, we 
would see this effect in any direction perpendicular to our line of motion (through the sunroof, 
for  instance)  if  we  had  regular  points  of  reference  to  look  at  (very  tall  telephone  poles, 
perhaps). Later on, we'll figure out whether this apparent curl has a basis in mathematical 
reality.

Figure 8-6. Field of vectors showing divergence.

Closely  related to  curl  is  the measurement  of  divergence.  In  the case of  divergence,  the 
vector strength  varies in the direction of the vectors. The formula for calculating divergence 
can be found in Appendix B.  We see the appearance of divergence out the front and rear 
windows of the car. If two telephone poles face each other from either side of the road, they 
appear to diverge, or get further apart, as we approach, and to converge as they get further 
behind us. In mathematical terms, there appears to be positive divergence ahead of us and 
negative divergence behind us. This is indeed an illusion with no mathematical basis.  No 
measurable  divergence is  created  by our  motion.  We might  say that  any divergence we 
observe is there whether we are moving or not. 
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Our motion does not cause the plowed field to rotate, nor does it create curl among the linear 
velocities  of  the  points  in  the  field.  However,  there  is  one  way  in  which  the  curl  is 
mathematically real. Our motion relative to the field gives all the points in the field a uniform 
linear velocity, but a nonuniform angular velocity. Depending on the location of a point in the 
field, that point is changing its angle in our polar frame of reference at a different rate. 

Figure 8-7.  When our car is stopped, all points in the field remain at the same angle in our polar coordinate 
system.

Figure 8-8. When we are in motion, different points in the field change their angle at different rates.

Angular velocities vary in every direction in this plane: both from near to far and from beside 
us to ahead of us. Remember that angular velocity is measured as a vector perpendicular to 
the plane of rotation. So our field is a field of up-or-down vectors which vary continuously in all 
horizontal directions (Figure 8-9). It happens that these vectors of angular velocity do not vary 
along  the  direction  in  which  they  point,  which  is  vertically.  This  situation  satisfies  the 
mathematical definition of curl. 
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Figure 8-9. A three-dimensional field of angular velocity vectors, showing curl.

The two points to remember in all of this is that relative motion does not create divergence, 
but it does create a vector field of angular velocities, and this field has curl. When our relative 
velocity is zero,  this curl  is zero.  We'll  see why these two points are significant when we 
discuss the equations relating electricity and magnetism in the next chapter. 

Actually, there is one more point to be made from our imaginary freeway trip. As we look out 
the side window, the angular  velocity of  each point  in the field in our line of sight varies 
inversely with the square of its distance from us. Now where have we seen that relationship 
before?

Before we move on to electromagnetism, we're going to revisit a few things with our new 
friends divergence and curl. First we'll return to electric and magnetic force. When we draw 
lines-of  force  diagrams  for  magnetism  and  static  electricity,  these  two  forces  look  quite 
different. Electric lines of force  diverge from a static charge; they grow stronger or weaker, 
more or less dense, in the direction which they point. Magnetic lines of force curl through a 
magnet; they grow stronger or weaker, more or less dense, perpendicularly to the direction 
which they point.

Figure 8.10.

Let's also return for a moment to our two rules for perspective drawings: 

Rule #1:  A series of regularly spaced objects will  appear to come closer together as the 
series recedes toward the horizon. 

We will correlate this rule to the concept of curl. 

Rule #2: Horizontal lines, if they point in the same compass direction, diverge from a common 
point on the horizon called their “vanishing point.” 

This correlates to the concept of divergence.
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To illustrate, let's look at a drawing of three sets of railroad tracks, spacing each set of tracks 
from each other at the same distance the rails have within each set. First we'll look at just the 
rails as they come out of the vanishing points. If this was a lines-of-force diagrams rather than 
perspective drawing, this would show divergence. The crossties, getting closer together as 
they approach the horizon, would represent curl if they were lines of force. 

Figure 8-11.

If we make this a wide-angle drawing, the rails and cross ties both show curl or divergence 
depending on which section of the drawing you look at. The rails diverge near the vanishing 
points but they curl midway between them; that is, they curve and are parallel but are spaced 
closer together nearer the middle of the horizon. The cross ties show “curl” at the vanishing 
points (even though they are not curved, they are closer together), and at the middle of the 
drawing, they no longer look parallel; they diverge. 

Figure 8-12.

What happens if we animate this scene? Let's run alongside the railroad tracks. The tracks 
are pretty much the same at every point, so their position in the drawing does not change as 
we run parallel to them. But the crossties are moving, aren't they? Watch them move down 
the tracks like they're items on a conveyor belt. Can you see them in the drawing, appearing 
to rotate as they round the artificial curve in the straight tracks? They look just like the furrows 
in the field as we passed them on the freeway. 

Figure 8-13. 
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Lastly, do you remember our light cones from chapter two? Divergence and curl, diagrammed 
above, also combine to give us a cone shape (Figure 8-13). Look at the third image above 
and visualize looking down the center of a cone with one set of regularly-space lines drawn 
from tip to edge and another set of curves which cross each of the first set of lines. 

Take some time to ponder this chapter and observe for yourself. Take a ride and look out the 
window!
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